Sintering and Crystallization Intensifiers for Production of Ceramic Paving Blocks by Vibropressing Technology

Author:

Montayev SarsenbekORCID,Omarov BerikORCID,Ristavletov RaimberdiORCID,Dosov KarzhaubayORCID,Montayeva NurgulORCID,Dosaliev KanatORCID

Abstract

The article presents the results of research on application of sintering and crystallization initiators based on a composition of blast-furnace granulated slag and glass wastes in the ceramic masses for production of ceramic paving blocks by vibro-pressing. The leading role of sintering and crystallization initiators in assuring the strong and dense structure of ceramic pieces was updated. The main laws of changes in physical and mechanical properties of ceramic paving stone samples depending on the amount of sintering and crystallization initiators in the burning temperature range 950–1000 °C have been established. It was determined that the availability of finely dispersed glass powder (fraction less than 0.1 mm) as a component of crystallization sintering initiators contributes to early emergence of liquid phase in the ceramic mass, as softening temperature of glass powder begins already at 720–750 °C. According to the results of X-ray phase and electron microscopic analysis it was determined that crystallization of low-temperature form of ß-wollastonite (CaSiO3) is observed in the samples burnt at the temperature range of 950–1000 °C. It was proved that the availability of ß-wollastonite in the ceramic mass serves as a reinforcing component. It has been established that high strength values are achieved in those compositions where ß-wollastonite crystallization in the burning products is the highest. As a result of scientific and experimental work the feasibility of producing the ceramic paving stones by vibropressing containing sintering and crystallization initiators that meet the requirements of quality, aesthetics, environmental friendliness, resource- and energy-saving was proved.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3