Author:
Zhao Dongfu,He Wenbo,Hao Peiyuan
Abstract
Using ultrasonic detection, microhardness test, scanning electron microscope test, mercury intrusion method and X-ray diffraction, the parameters of sonic time, microhardness, pore size distribution, cumulative pumping of high strength concrete under low cycle compression loading are tested after exposure to 200 °C, 400 °C and 600 °C. Experimental study showed that with the increasing loading times, the rangeability of sonic time, the microhardness, and total pore volume shows an overall trend of fast-slow-fast. Furthermore, the sonic time and microhardness are linearly related to the longitudinal fatigue strain. The research results provided references for nondestructive testing, fatigue damage analysis and structural evaluation of concrete structures subjected to fire or other high temperature processes.
Publisher
Periodica Polytechnica Budapest University of Technology and Economics
Subject
Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering