Laboratory Investigation on the Effect of Microsilica Additive on the Mechanical Behavior of Deep Soil Mixing Columns in Saline Dry Sand

Author:

Esmaeili Morteza,Astaraki Farshad,Yaghouti Hamed,Movahedi Rad Majid

Abstract

Since loose and salty subgrades consider as problematic barriers while constructing new transportation infrastructures such as railway tracks and roads are required, the current study aims to find a solution to stabilize these kinds of subgrades using the deep soil mixing (DSM) technique and micro silica additive. In the present study a series of experimental DSM columns were executed in a salty sand-filled chamber utilizing a laboratory scale DSM apparatuses. In the first step, by adding three salt percentages of 5, 10 and 20 into the original sand, four different sandy subgrades with a relative density of 70% were prepared. Considering three percentages of 10, 15 and 20 for micro silica additive, the water-to-cement ratio of 1, salt percentages of 0, 5, 10 and 20 totally 150 sand-cement columns were constructed in the lab environment. In continuation, unconfined compression strength (UCS) and elasticity modulus of all capped DSM columns have been determined and interpreted using scanning electron microscope (SEM) images at three ages of 7,14 and 28 days. The results indicated that increasing the salinity of subgrade soil from 0 to 20% resulted in a falling UCS and Young module by 28 and 21% for 28-days specimens. Furthermore, as a solution, adding micro silica in cement-water grout up to 15% resulted in enhancing mechanical characteristics of the DSM columns. So that adding 15% microsilica caused a 21 and 42% increase in UCS and elasticity modulus of 28-days samples respectively, executed in subgrade with 20% salt.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3