Sensorless Control Technique of Open-End Winding Five Phase Induction Motor under Partial Stator Winding Short-Circuit

Author:

Khadar Saad,Kouzou Abdellah,Rezzaoui Mohamed Mounir,Hafaifa Ahmed

Abstract

Open-end winding induction machines are gaining more attention in the last years due to their attractive advantages in the industrial applications, where high reliability is required. However, despite their inherit robustness, they are subjected to various electrical or mechanical faults that can ultimately reduce the motor efficiency and later leads to full failure. This paper proposes a method of modeling the five phase induction machine with open end stator winding taking into consideration the short-circuit fault between turns. The fault modeling is based on the theory of electromagnetic coupling of electrical circuits. In addition, a sliding mode observer is used to estimate the speed rotor. The idea of proposed backstepping strategy is used in this paper to allow to the studied machine to continue its operating state under short circuit fault between turns. The proposed sensorless control strategy is evaluated in terms of the healthy and faulty performances through the simulation results presented in this paper. The obtained results prove that the proposed sensorless control technique allows to the open-end winding five phase induction machine to continue its operation mode under the specified fault of partial short-circuit of the stator winding. This can be a very practical situation in the industrial applications, especially in the case where the maintenance is not easy and the operation of the industrial process should not be interrupted suddenly.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Computer Science Applications,Information Systems,Signal Processing,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3