Surface Anisotropy on 3D Printed Parts

Author:

Ficzere Peter

Abstract

It is well known that the surface quality obtained in additive manufacturing processes is highly variable. There are several reasons for this, of which the most prominent is the staircase effect, which results from the fact that 3D printing can be actually considered as a 2.5 machining process, as we build the part layer by layer. However, this staircase effect can be very different on surfaces that are arranged in different ways. By measuring the values that characterise the surfaces (Ra, Rz), however, we can observe that they are direction dependent, i.e. it does not matter how we measure them. This phenomenon is called surface anisotropy. It is clear that the surface roughness also has an effect on the tribological behaviour. In the case of a component where it is in contact with another component and relative displacement occurs between them, frictional properties may play a prominent role, which may thus also become direction dependent. Surface roughness also has a clear effect on fatigue properties. Consequently, for parts undergoing periodic dynamic stresses, it may be important to choose the right manufacturing orientation. The present study aims to demonstrate the extent of variation in surface roughness on different surfaces of a part produced by FDM. For this purpose, surface quality factors are investigated and evaluated on a self-designed model produced with given manufacturing parameters.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3