The Effect of Microwave Irradiation on the Synthesis of Graphene from Battery Waste on Capacitance Properties

Author:

Rahayu Endah Fitriani,Budiyono Budiyono,Hadiyanto Hadiyanto

Abstract

Supercapacitor material is an alternative in energy storage. Supercapacitors are charge storage devices that have a high energy density, fast charge/discharge rates, long service life, wide operating temperature range, and are environmentally friendly. Graphene is a nanomaterial that can be used as a supercapacitor because it has high conductivity and a large surface area, but graphene can experience agglomeration so it can affect its capacitance properties. The microwave-assisted method can be used in the synthesis of graphene. Several microwave-based techniques are becoming more popular for producing graphene and altering it. Due to its quick, precise, uniform, and volumetric heating, microwave heating is a promising method for the thermochemical treatment and reduction of graphene oxide to graphene. This research aimed to examine the effect of microwave irradiation time on the capacitive properties of graphene synthesis as a supercapacitor. Graphene oxide (GO) can be reduced into graphene quickly and easily using microwave pulses lasting 15 to 30minutes to produce high-quality graphene fabrication. The characterization test was performed using UV-Vis, FTIR, SEM-EDX and cyclic voltammetry (CV). As a result, the optimum time is 25 minutes, and it showed an absorption peak at the 282 nm wavelength dan the CV analysis showed that the graphene has double capacitor properties with a specific capacitance of 140.7 F/g in 20 mV/s. Besides, the result of SEM indicated that graphene could be formed successfully. Its potential applications are also illustrated by emphasizing its usage as electrode material. Finally, its main challenges and prospects are considerably pointed out.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3