Author:
Adeyemo Olumuyiwa,Ja'afaru Mohammed,Abdulkadir Sani,Salihu Aishatu
Abstract
Due to increase in demand for energy as a result of human population explosion, industrialization and environmental hazards posed by fossil fuels, there is a need to source for alternative energy sources that are cheaper and environmental friendly. Three different lignocellulosic biomasses were studied for their suitability for bioethanol production. Fungi and yeasts were isolated using serial dilution and spread plate methods. Identification of both fungi and yeasts was done using their cultural and microscopy characteristics. Saccharification of the pre-treated biomass was done with both crude cellulase and mycelia inoculant. Bioethanol was produced using batch culture fermentation. Ethanol produced was detected using spectrometric method and quantified using High Performance Liquid Chromatography (HPLC). The effects of substrate concentration, pH and temperature on ethanol yield were optimized. Fifty fungal isolates were obtained from soil collected. Six yeasts, all Kluyveromyces species fermented three sugars to ethanol with isolate Kluyveromyces sp.Y2 having the shortest time. It was selected for fermentation. Aspergillus niger S48 had highest cellulase activity measured in a zone of hydrolysis of 26.0 mm. It had the highest glucanase activity, endoglucanase (0.462 U/mL) and exoglucanase (0.431 U/mL). The outcome of this study indicated that crude cellulase produced by Aspergillus niger S48 hydrolyzed the pre-treated rice chaff with 1.07 mg/mL of fermentable sugars higher than 0.87 mg/mL when the mycelia of the fungus was inoculated to pretreated rice chaff for hydrolysis. Ethanol was optimally produced at 12 % substrate concentration using rice chaff, at a temperature of 35 °C and pH 5.0.
Publisher
Periodica Polytechnica Budapest University of Technology and Economics
Subject
General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献