Experimental and Numerical Behavior of Basalt Fiber Reinforced Short Concrete Columns Under Axial Loading

Author:

H. Mohammed DhiyaaORCID,M. Jabbar AdilORCID,A. Hasan QaisORCID

Abstract

This paper presents experimental and numerical investigations to reveal effecting of incorporating basalt fibers into a concrete matrix on the structural behavior and loading capacity of axially loaded short columns. Six volume fractions of chopped basalt fibers are added to the same concrete mixture to prepare six identically reinforced columns. The results illustrate that the bonding forces between microfilaments and matrix increase to provide good internal confinement for concrete ingredients, which enhances compressive strength and column loading capacity. The 0.3 % basalt fiber awarded the best compressive strength, while 0.15 % and 0.3 % awarded the best load capacity to the column. The Addition of basalt fibers delays cracking to increase the cracking load by about 50 % more than no fiber column, which indicates that it needs more energy to overcome the bonding strength between filaments and matrix. At the ultimate state, the loading capacity increases by 15 % and 17 % for 0.15 % and 0.3 % of basalt fibers and by 10 % and 12 % for 0.45% and 0.6% of basalt fiber. The 0.75 % decreased compressive strength by about 6 % but raised the column's ultimate load by 18 %. Therefore, basalt fiber benefits the cracking load more than the maximum load. The finite element showed approaching the peak load in numerical and experimental results. The longitudinal rebars and ties do not yield at the ultimate state. Increasing the reinforcement ratio raises loading capacity while lowering the yield stress of bars minimizes the maximum load.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Behavior of Tied Short RCA Columns Strengthened with Basalt Fiber;IOP Conference Series: Earth and Environmental Science;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3