Forecasting of Wind Induced Pressure on Setback Building Using Artificial Neural Network

Author:

Bairagi Amlan KumarORCID,Dalui Sujit KumarORCID

Abstract

The wind load on an irregular plan shape tall building is quite different compared to a conventional plan shape tall building. Especially the aerodynamic parameters have extreme change due to the variety of setbacks at one or more the disparity of level. This paper highlights the prediction of pressure coefficient on square, single (20 %) setback and double (10 %) setback buildings for any wind incidence angle by CFD simulation and validated with Artificial Neural Network (ANN) and fast Fourier transform. The ANN is a widely used and efficient tool for different types of analyses. The 0° to 180° wind incidence angles (WIAs) considered as input data and respective face wise pressure coefficient (Cp) used as target data. The Levenberg-Marquardt training function and Mean Square Error (MSE) performance function used to train the target data. The face wise graphs of CFD, ANN and FFT are plotted in a single graph and the Cp of the surface checked by any random WIAs. Amazingly, the Cp of random WIA by ANN is almost similar to CFD. Furthermore, the error of ANN is 0.6 % to 2.5 %, which is negligible. According to this predicted graph, the design Cp of any WIA can be easily calculated and implement directly in the design.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3