Author:
Priyanto Slamet,Sudrajat Ronny Windu,Suherman Suherman,Pramudono Bambang,Riyanto Teguh,Dasilva Teodora M. F. B.,Yuniar Rima Chairani,Aviana Hanifa
Abstract
Recently, the increase in fuel oil demand was not supported by petroleum production due to the low productivity of old wells. Furthermore, an appropriate technology, such as Enhanced Oil Recovery (EOR) technology, is needed to maximize the productivity of the old well. Therefore, the purpose of this study was to synthesize a polymeric surfactant for the EOR process from sodium lignosulfonate (SLS) and polyethylene glycol (PEG) in various SLS to PEG ratios, namely 1:1 (PS1), 1:0.8 (PS2), and 1:0.5 (PS3). The surfactants were characterized using several methods, such as Fourier Transform-Infrared spectroscopy (FT-IR), compatibility, stability, viscosity, and phase behavior tests. The performance of the surfactants for the EOR process in different brine solution concentrations (16,000 ppm and 20,000 ppm) was also studied. The result showed that the introduction of the PEG molecule to the surfactant had been successfully conducted as FT-IR analysis confirmed. The surfactant's hydrophilicity increased with the introduction of PEG due to the increase of the ether group. A Winsor Type I or lower phase microemulsion was formed due to the high hydrophilicity. The highest oil yield (79 %) was obtained by PS1 surfactant, which has the highest PEG dosage, in a brine solution of 1,600 ppm. Therefore, it was concluded that the introduction of PEG could increase the hydrophilicity, viscosity, and EOR performance.
Publisher
Periodica Polytechnica Budapest University of Technology and Economics
Subject
General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献