Dynamic Modeling of Streptomyces hygroscopicus Fermentation Broth Microfiltration by Artificial Neural Networks

Author:

Jokić Aleksandar,Nikolić Nevenka,Lukić Nataša,Grahovac Jovana,Dodić Jelena,Rončević Zorana,Šereš Zita

Abstract

Artificial neural networks (ANNs) have been used to dynamically model cross-flow microfiltration of Streptomyces hygroscopicus fermentation broths. The aim is to predict permeate flux as a function of temperature, feed flow, transmembrane pressure and processing time. Dynamic modeling of microfiltration performance of complex systems (such as broths) is very important for design of new processes and better understanding of the present. The results of ANN model analysis suggest that the coefficients of the determination have high values. The application of the Bayesian regularization gave better results to the performance of the neural network compared to the Levenberg-Marquet algorithm. The optimal number of neurons in the hidden layer is eight. Analysis of the absolute relative error showed excellent permeate flux estimates for 100 % of the data points, with an error less than 5 % for the data obtained during microfiltration in the presence of a turbulence promoter. Whilst in the case of microfiltration without turbulence promoter 90 % of predictions have an error less than 10 %. The results of applying the concept of neural networks in the dynamic modeling of microfiltration of Streptomyces hygroscopicus fermentative broths with and without a turbulence promoter clearly show the validity of proposed method for simulation and prediction of microfiltration experimental results.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3