Analytically Determining Bond Shear Strength of Fully Grouted Rock Bolt Based on Pullout Test Results

Author:

Hazrati Aghchai MousaORCID,Maarefvand Parviz,Salari Rad Hossien

Abstract

Usually, in a fully grouted rock bolt pullout test the load-displacement curve of the rock bolt head is recorded. This paper presents an analytical method to use this curve for determining the bond (bolt-grout and grout-rock interface) shear strength parameters. For this purpose, the fully grouted rock bolt interaction with grout and surrounding rock in the pullout test is investigated and the load-displacement curve of the bolt head (beginning of the bonded section) is obtained analytically. For modeling the bolt-grout interface behavior a distribution of the shear stress along the fully grouted rock bolt by consideration of bolt shank failure is used. In this regard, different stages including complete bonding, partial decoupling, decoupling with the residual shear strength and complete decoupling are considered. With increasing the applied load, two possible cases involving the rock bolt complete pullout and bolt shank yielding are taken into account. Based on the presented analytical method, the obtained bolt head load-displacement curve can be compared with the one recorded in the pullout test. With this, the relevance of selected shear strength parameters compared to real parameters can be assessed. A flowchart for determining the bolt bond shear strength parameters is presented using the trial and error method (coded in Matlab). The proposed solution is used to determine two experimental pullout shear strength parameters. The results show good agreement between predicted and calculated load-displacement curves.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3