Natural and Forced Convective Heat Transfer Enhancement for Solid Cylinders with Different Geometrical Shapes

Author:

Rafi Abid Hasan,Rahman Md. Rafikur,Rabby S. M. Fazla,Ahmed Dewan Hasan

Abstract

Enhancing heat transfer for both natural and forced convection is a common issue for any heat transfer process. Experimental studies have been carried out for six different geometrical shapes of solid bars for natural convection and forced convection with four different air velocities while keeping the same perimeter and length of the solid bars, which means the lateral surface area of the bars is the same. Results reveal that both the natural and forced convective heat transfer characteristics are greatly influenced by the geometrical shape in terms of Nusselt number (Nu), heat transfer coefficient (h), and heat transfer rate (q). In addition, isosceles and cylindrical shape geometry contribute to the lowest and highest heat transfer, respectively. As well, it is obtained from the results that convective heat transfer characteristics are directly related to the cross-sectional area, even if the perimeters are the same. Moreover, among the different geometrical shapes, the isosceles and hexagonal shapes take the shortest and longest duration to attain the steady-state condition in the conductive heat transfer process. The convective heat transfer characteristics are well-validated, with available results for both natural and forced convection heat transfer.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3