Validation of the Estimated Torques of an Open-chain Kinematic Model of the Human Body

Author:

Petró BálintORCID,Kiss Rita M.ORCID

Abstract

The standing human body is frequently modeled as an inverted double pendulum restricted to a single plane. In order to capture the coordination efforts and interplay between spatial dimensions, the model has to capture motion and joint torques in all spatial dimensions. Our two-segment model covers two degrees of freedom (ML and AP revolutions) at the ankle and the hip level and utilizes the Denavit-Hartenberg convention. This work aimed to validate the model's torque estimation on a diverse group of participants (11 women, 22–56 years, 11 men, 22–61 years). The inverse dynamic calculations provide estimated joint torques for a motion capture recorded trial, while standing on a force platform enables the indirect measurement of ankle torques. A 60-second-long visually guided balancing task was recorded and repeated three times. The estimated and the indirectly measured torques were compared, and offset and variance type errors ( normalized RMSE and R2 ) were analyzed. The R2-values were excellent (R2 > 0.90) 64 out of the 66 cases (97%) for AP torques and 58 out of the 66 cases (88%) for ML torques. Normalized RMSE values were dominantly under the 0.35 value with some outliers. RMSE showed no evident connection with age, body height, body mass, or BMI. An open-chain kinematic model with two segments, following the Denavit-Hartenberg convention, is well suited to estimate the control torque traces of the human body during standing balancing and needs only three tracked positions.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Torque modulation mechanism of the knee joint during balance recovery;Computers in Biology and Medicine;2024-06

2. The Cadaver in the Machine: The Social Practices of Measurement and Validation in Motion Capture Technology;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3