Robust Method for Diagnosis and Detection of Faults in Photovoltaic Systems Using Artificial Neural Networks

Author:

Djalab Aicha Amani,Rezaoui Mohamed Mounir,Mazouz Lakhdar,Teta Ali,Sabri Nassim

Abstract

During their operation, PV systems can be subject of various faults and anomalies that could lead to a reduction in the effectiveness and the profitability of the PV systems. These faults can crash, cause a fire or stop the whole system. The main objective of this work is to present a sophisticated method based on artificial neural networks ANN for diagnosing; detecting and precisely classifying the fault in the solar panels in order to avoid a fall in the production and performance of the photovoltaic system. The work established in this paper intends in first place to propose a method to detect possible various faults in PV module using the Multilayer Perceptron (MLP) ANN network. The developed artificial neural network requires a large database and periodic training to evaluate the output parameters with good accuracy. To evaluate the accuracy and the performance of the proposed approach, a comparison is carried out with the classic method (the method of thresholding). To test the effectiveness of the proposed approach in detecting and classifying different faults, an extensive simulation is carried out using Matlab SIMULINK.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Computer Science Applications,Information Systems,Signal Processing,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3