The Modified Energy-based Method for Seismic Evaluation of Structural Systems with Different Hardening Ratios and Deterioration Hysteresis Models

Author:

Nodeh Farahani RasoolORCID,Abdollahzadeh Gholamreza,Mirza Goltabar Roshan Alireza

Abstract

Prediction of target displacement in structural systems plays a significant role in performance-based design and rehabilitation of structures. In this study, the γ factor for different hardening ratios, including 1, 2, 3, 5, 7.5, 10, and 15 percentages, stiffness-strength-deterioration models, and soil type classes is determined to modify the energy balance equation in performance-based plastic design (PBPD). Statistical results indicate that the effect of the hardening ratio, deterioration, and soil type class on the capacity curve is considerable. Therefore, a simple equation based on the period of the vibration and ductility is suggested to estimate the γ factor in different structural systems. Moreover, four 1-, 3-, 7-, and 12-story moment steel structures with various hardening ratios in the material are designed to validate the proposed method. The suggested values for the γ factor show exact results compared to collected displacements from time history analysis, while the error in the previous work was considerable. Statistical results showed that the mean error in the previous method in estimating target displacement for 1-, 3-. 7-, and 12-story structures is about 15%, 20%, 20%, and 32%, respectively. Conversely, the mean error in this study for estimating target displacement of 1-, 3-. 7-, and 12-story structures is about 10%, 7%, 6%, and 15%, respectively. Finally, the proposed method is examined on the empirical reinforced concrete (RC) bridge pier simulated numerically with fiber-based modeling. Similarly, the suggested equation estimates the target displacement appropriately for the concrete model compared to achieved displacements from nonlinear dynamic analysis.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3