Increasing the Prediction Efficiency of Hansen Solubility Parameters in Supercritical Fluids

Author:

András Csaba Dezső,Mátyás László,Ráduly Botond,Salamon Rozália Veronika

Abstract

This work describes a simplified method developed for calculating the Hansen parameters (HSPs) for scCO2-polar modifier solvent mixtures. The method consists in fitting 2nd order equations on the calculated values of HSPs of pure components in function of pressure and temperature. It has been proved that these equations are suitable for the characterization of the above system. The current work also proposes a modified representation method, which eliminates the shortcomings of the original ternary Teas diagram, normally used for the representation of the Hansen parameters. On the one hand, the Teas diagram uses quantities without any physical meaning and, on the other hand, the illustration of the solubility information is distorted because it does not take into account the differences of the Hildebrand parameters of different solvents. The factors we have chosen to represent on the ternary diagram possess physical meaning (cohesion energy density partitions). The distortion was eliminated by extending the Teas diagram to a prismatic three dimensional representation. We proved that the Hansen-ellipsoid from the Cartesian coordinate system (dd = f (δH, dp)) is transformed in an ellipsoid also in the new coordinate system (the transformation is pseudo-isomorphic). Nonetheless, the suggested corrections improve the accuracy of the Hansen method, in some cases the interactions between the solvents and the dissolved materials are still not predicted with sufficient accuracy. Most probably a thermodynamic-based correction of the values of the HSPs of small molecules could lead to a significant improvement of the predictive ability of the newly developed method.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of Antioxidant Activity of Garden Blackberries (Rubus fruticosus L.) Extracts Obtained with Different Extraction Solvents;Applied Sciences;2022-04-15

2. Application of supercritical water in biocatalytic processes;Green Sustainable Process for Chemical and Environmental Engineering and Science;2021

3. Preface;Periodica Polytechnica Chemical Engineering;2019-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3