The Study of Cylindrical Polymer Fuel Cell's Performance and the Investigation of Gradual Geometry Changes' Effect on Its Performance

Author:

Samanipour Hossein,Ahmadi Nima,Mirzaee Iraj,Abbasalizade Majid

Abstract

To achieve an optimal perception of cardinal processes and prior to prototype fabrication to fuel cell optimization, modeling is extensively used in industrial researches and applications to transfer mass and heat into small-sized channels. In the current study, Computational Fluid Dynamics is presented to cylindrical polymer fuel cell with circular and elliptical cross-section. Concurrently, the design of fractured electrode-membrane assembly is introduced. The simulations explicitly demonstrate comparing to Base case production, the fractured case of the Electrode Membrane Assembly produces more current. Likewise, a new design for cylindrical polymer fuel cell is illustrated. In the cylindrical design, both the effect of gradual geometric changes on the performance including radius changes and the transformation of cross-section from circle to ellipse has been investigated and compared to Base case. The obtained results displays the cylindrical fuel cell’s better performance compared to Base case. Accordingly, establishing wider passage, in same volume for reactive gases toward reaction areas, results in sharp increase in the performance. Finally, validating simulation with valid laboratory results, proper correspondence is achieved.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3