Stress Analysis of Segmental Tunnel Lining Using Artificial Neural Network

Author:

Rastbood Armin,Gholipour Yaghoob,Majdi Abbas

Abstract

The paper describes an artificial neural network method(ANNM) to predict the stresses executed on segmental tunnellining. An ANN using multi-layer perceptron (MLP) is developed.At first, database resulted from numerical analyses wasprepared. This includes; depth of cover (H), horizontal to verticalstress ratio (K), thickness of segment (t), Young modulus ofsegment (E) and key segment position in each ring (θ) on thetunnel perimeter as input variables. Different types of stressesand extreme values of displacement have been considered asoutput parameters. Sensitivity analysis showed that the coverof the tunnel and key position are the most and less effectiveinput variables on output parameters, respectively. Resultsfor coefficient of determination (R2), variance accounted for(VAF), coefficient of efficiency (CE) and root mean squarederror (RMSE) illustrates a high accuracy of the presented ANNmodel to predict the stress types and displacements of segmentaltunnel lining.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3