Author:
Roudak Mohammad Amin,Karamloo Mohammad,Shayanfar Mohsen Ali
Abstract
In structural reliability analysis, Hasofer-Lind and Rackwitz-Fiessler (HL-RF) method is a widely used approximation method for evaluating the reliability index. However, by increasing the nonlinearity or complexity in the limit state function of a structure, HL-RF may get in trouble for convergence. This paper represents an iterative algorithm that tries to minimize the Lagrange function, associated with the reliability problem. In each iteration of this method, two steps are followed, to satisfy the minimization condition and the existing constraint. In the first step, a movement for minimization in a descent direction is followed. In the second step, another search direction contributes to approach limit state surface, and therefore the next iteration can start from the vicinity of the surface. Employing Lagrange reliability function and limit state function simultaneously in the proposed two-step Lagrangian-based method (TSLB) can help to control the numerical instability in highly nonlinear problems. The accuracy and robustness of the proposed algorithm are shown in illustrative examples of the literature.
Publisher
Periodica Polytechnica Budapest University of Technology and Economics
Subject
Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献