Development of Intumescent Flame Retardant for Polypropylene: Bio-epoxy Resin Microencapsulated Ammonium-polyphosphate

Author:

Nguyen Thanh Thuy Tien,Decsov Kata EnikőORCID,Bocz KatalinORCID,Marosi GyörgyORCID,Szolnoki BeátaORCID

Abstract

As polypropylene (PP) has no charring ability on its own due to the lack of hydroxyl functional groups, the flame retardant system needs the addition of carbonizing agent in a relatively great amount. Ammonium-polyphosphate (APP), a conventional flame retardant additive was modified by microencapsulation with a sorbitol-based bioepoxy resin shell to create an intumescent flame retardant system with enhanced charring ability for PP. The flame retardant efficiency of the microencapsulated additive, which contains all the components needed in an effective intumescent flame retardant system, was evaluated in PP matrix at different loadings.When compared to the physical mixture of the component, the microencapsuated form of APP (MCAPP) was found to have improved flame retardant efficiency in PP. The LOI values of the MCAPP containing PP samples increased by 8–11 V/V% besides achieved V-0 classification according to the UL94 test. During cone calorimeter tests, the burning intensity was reduced (peak of heat release rate decreased by 20–35% and shifted in time), increased amount of charred residue was obtained, and based on the calculated Flame Retardancy Index (FRI) “Excellent” fire performance was achieved when MCAPP was used. The improved flame retardant performance is attributed to the effective interaction between the APP core and the readily available carbonizing shell, which promoted the formation of increased amount of char accompanied with improved heat protecting and barrier efficiency.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3