Robustness Study of a Tensile Modulus Prediction Model for Semicrystalline Polymers

Author:

Zarbali Ali,Pinke Balázs,Menyhárd Alfréd

Abstract

This work presents a robustness study of a previously developed empirical model that links Young's modulus to two key parameters of crystalline structure; crystallinity and lamellae thickness. The reliability of this modulus prediction model was tested by using different calorimeters and different polypropylene grades as well. Small samples were fabricated from injection-molded bars from different locations of the specimens in order to check the effect of structural inhomogeneity originated by the dynamic processing conditions. In addition, the standard deviation and consequently the accuracy of the prediction was tested by repeated calorimetric measurements. The crystalline structure and melting characteristics were measured by differential scanning calorimetry (DSC). The tensile properties of studied specimens were evaluated by standardized tensile tests. Although, the accuracy and reliability of the prediction model is dependent on the instrument used for thermal analysis, reasonably good agreement was found between the predicted and measured values in most cases. However, we may note that only well-calibrated calorimeters are suitable for reliable prediction of the modulus.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3