Shear Flow in Cylindrical Open Channel Under Precession

Author:

Alshoufi Hajar

Abstract

The study of forced oscillations in open cylindrical channel under precession is extended to include the shear effect, that is induced by inertial waves in such systems. The linear part of the problem led to two equations for stability one for the viscous part similar to Orr-Sommerfeld equation and one for the inviscid part similar to Rayleigh equation, the second was solved and discussed depending on the stream function observation. The linear part also led to relationship that connects between the stream velocity and the disturbance one is derived in a form similar to Burns conditions for open flows under normal conditions. Experimentally measuring the horizontal velocity distribution with depth showed that this distribution is sinusoidal one. Burns condition was solved based on this assumption. The nonlinear part of the problem led to a new version of Koteweg De-Vries (KdV) equation that is solved numerically by applying the leapfrog method for time discretization, Fourier transformation for the space one, and the trapezoidal rule for solving the integrals with depth, the results showed that the shear has no specific impact on the wave form which is similar to the classical results obtained by the theories under normal conditions.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3