Preparation of Highly Porous Scaffolds with Controllable Pore Size from Microbial Polyesters

Author:

Polyák Péter,Tóth Ágoston,Tátraaljai DóraORCID

Abstract

Microbial polyesters saw limited use in the field of tissue engineering, even though the biocompatibility of these polymers makes them ideal candidates for this role. The primary factor that hinders the proliferation of microbial polyesters in this market is that their processing with conventional techniques, such as electrospinning or 3D printing, is challenging. However, the full potential of these biopolymers could still be utilized by applying unconventional manufacturing methods, such as those based on the concept of salt leaching. An implementation of this concept facilitates the production of scaffolds that simultaneously have high porosity and excellent permeability. Moreover, the average pore size can also be varied in the range from 50 to 400 µm, which was reported to be optimal for the cultivation of eucaryotic cell cultures. By adjusting the pore size, the scaffold can be tailored to the eucaryotic cells the tissue consists of. Furthermore, we have developed an entirely new computational method for the approximation of the pore size distribution of the scaffolds. The method relies on 3D data reconstructed by the software of a digital optical microscope and also facilitates the modeling of the average pore size of scaffolds. Thus, besides the control of the pore size, our method enables its prediction as well.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3