Transformation of Industrial By-Products into Composite Photocatalytic Materials

Author:

Katsika Eleni,Volioti Maria,Karayannis Vayos G.,Moutsatsou Angeliki

Abstract

The transformation of both calcareous and siliceous Greek power station by-products (lignite ashes) into novel composite materials with photocatalytic properties for environmental application was investigated. Particularly, a comparison between the development of coated ceramic substrates and the modification of ash surfaces is attempted. Specifically, a) the sintering process (1000 °C, 2 h) of both fly and bottom ash (either calcareous or siliceous) for their conversion into compacted ceramic substrates coated with TiO2 slurry and then further thermally treated (500 °C, 1 h) to acquire TiO2 film consistency onto the ceramic substrate and b) the process of TiO2 precipitation on lignite ash surfaces in acidic solution after neutralization, and estimation of the TiO2 percentage, are compared. The microstructures obtained were examined by XRD and SEM-EDX analysis. Vickers microhardness was also determined for the ceramic microstructures, with satisfactory results (up to 356HV). The energy gap measurements of the coatings were found to be between 3.02eV and 3.17eV, which is located between the energy gap of anatase (3.23eV) and rutile (3.02eV). The coating mass was about 0.059 g/cm2. The photocatalytic activity under visible and UV irradiation was investigated in aqueous solutions of methylene blue and methyl orange organic dyes, with encouraging results. A main advantage of the processes proposed is the immobilization of TiO2 onto largely available secondary resources, which can lead to production of value-added ‘green’ photocatalysts for the treatment of industrial effluents in the framework of circular economy.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3