The significance of oxidative stress in the pathophysiology of Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Author:

Walker Max,Hall Katherine,Peppercorn Katie,Tate Warren

Abstract

Long COVID is now well accepted as an ongoing post-viral syndrome resulting from infection of a single virus, the pandemic SARS-CoV-2. It mirrors the post-viral fatigue syndrome, Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome, a global debilitating illness arising mainly from sporadic geographically-specific viral outbreaks, and from community endemic infections, but also from other stressors. Core symptoms of both syndromes are post-exertional malaise (a worsening of symptoms following mental or physical activity), pervasive fatigue, cognitive dysfunction (brain fog), and sleep disturbance. Long COVID patients frequently also suffer from shortness of breath, relating to the lung involvement of the SARS-CoV-2 virus. There is no universally accepted pathophysiology, or recognized biomarkers yet for Long COVID or indeed for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Clinical case definitions with very similar characteristics for each have been defined. Chronic inflammation, immune dysfunction, and disrupted energy production in the peripheral system has been confirmed in Long COVID and has been well documented in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Neuroinflammation occurs in the brain in Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome as shown from a small number of positron emission tomography and magnetic resonance spectroscopy studies, and has now been demonstrated for Long COVID. Oxidative stress, an increase in reactive oxygen and reactive nitrogen species, and free radicals, has long been suggested as a potential cause for many of the symptoms seen in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, resulting from both activation of the brain’s immune system and dysregulation of mitochondrial function throughout the body. The brain as a high producer of energy may be particularly susceptible to oxidative stress. It has been shown in peripheral immune cells that the balanced production of proteins involved in regulation of the reactive oxygen species in mitochondria is disturbed in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Fluctuations in the chronic low level neuroinflammation during the ongoing course of Long COVID as well as Myalgic Encephalomyelitis/Chronic Fatigue Syndrome have been proposed to cause the characteristic severe relapses in patients. This review explores oxidative stress as a likely significant contributor to the pathophysiology of Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, and the mechanisms by which oxidative stress could cause the symptoms seen in both syndromes. Treatments that could mitigate oxidative stress and thereby lessen the debilitating symptoms to improve the life of patients are discussed.

Publisher

Knowledge Enterprise Journals

Subject

General Arts and Humanities

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3