Cellular signaling in macrophage migration and chemotaxis

Author:

Jones Gareth E1

Affiliation:

1. The Randall Centre for Molecular Mechanisms of Cell Function, King’s College London , United Kingdom

Abstract

Abstract Whereas most cells in adult tissues are fixed in place by cell junctions, leukocytes are motile and able to migrate actively through the walls of blood vessels into surrounding tissues. The actin cytoskeleton of these cells plays a central role in locomotion, phagocytosis, and the regulation of cell shape that are crucial elements of neutrophil and monocyte/macrophage function. This review will concentrate on how macrophages in particular control the actin cytoskeleton to generate cell movement and the shape changes required for chemotaxis. It has recently become evident that a complex of seven proteins known as the Arp2/3 complex regulates the assembly of new actin filament networks at the leading front of moving cells. Proteins of the Wiskott-Aldrich Syndrome Protein (WASP) family bind directly to the Arp2/3 complex and stimulate its ability to promote the nucleation of new actin filaments. Upstream of the WASP family proteins, receptor tyrosine kinases, G-protein-coupled receptors, phosphoinositide-3-OH kinase (PI 3-kinase), and the Rho family of GTPases receive and transduce the signals that lead to actin nucleation through WASP-Arp2/3 action. Although many gaps remain in our understanding, we are now in a position to consider completing signaling pathways that are initiated from outside the cell to the actin rearrangements that drive cell motility and chemotaxis.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Immunology,Immunology and Allergy

Reference108 articles.

1. Cell migration: a physically integrated molecular process;Lauffenburger;Cell,1996

2. Actin-based cell motility and cell locomotion;Mitchison;Cell,1996

3. The modular structure of actin-regulatory proteins;Puius;Curr. Opin. Cell Biol.,1998

4. Integrin-mediated cell adhesion: the cytoskeletal connection;Critchley;Biochem. Soc. Symp.,1999

5. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages;Allen;J.Cell Sci.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3