Influence of Control Algorithm on Train Traffic Technical Characteristics

Author:

Kornev Dmitriy1

Affiliation:

1. Research and Design Institute for Information Technology, Signaling and Telecommunications on Railway Transport (JSC NIIAS)

Abstract

In order to choose locomotive control algorithm when prognosing train motion rational mode in an exploitation by the methods of mathematical modeling, the calculation was performed of main technical and economic characteristics of the operation of diesel locomotive 2TE116U with a stock at the use of full power and at control, basing on the parameters of a mode map. The method basis represents train motion dynamic model on a railway section with a given profile. To verify the de-veloped method, numerical studies were carried out in the wide range of changes of stock weights which not exceed the calculated weight. The obtained results have been compared with statistical data on the values of operational characteristics of train motion on Russia railways. It has been shown that train motion mode modelling at the use of locomotive full power gives a significant error at calculating technical speed, at the norm of train weight rate and fuel consumption and does not allow calculating locomotive control rational algorithm on optimization used criteria inclusive of op-eration conditions. At the choice of locomotive control rational algorithm, the necessity is substanti-ated for taking into account real conditions of train motion operation by batch or partially batch schedule which are reflected in mode map parameters.

Publisher

Petersburg State Transport University

Subject

General Medicine

Reference14 articles.

1. Baranov L. A., Golovicher Ya. M., Erofeev E. V. et al. Mikroprotsessornyye sistemy avtovedeniya podvizhnogo sostava [Microprocessor systems for auto-matic guidance of rolling stock]. Moscow: Transport Publ., 1990, 272 p. (In Russian), Baranov L. A., Golovicher Ya. M., Erofeev E. V. et al. Mikroprotsessornyye sistemy avtovedeniya podvizhnogo sostava [Microprocessor systems for auto-matic guidance of rolling stock]. Moscow: Transport Publ., 1990, 272 p. (In Russian)

2. Muginshtein L. A., Vinogradov S. A., Yabko I. A. et al. Energooptimal'nyy tyagovyy raschet dvizheniya poyezdov [Energy-optimal traction calculation of the movement of trains]. Zheleznodorozhnyy transport [Railway transport]. 2010, vol. 2, pp. 24–29. (In Russian), Muginshtein L. A., Vinogradov S. A., Yabko I. A. et al. Energooptimal'nyy tyagovyy raschet dvizheniya poyezdov [Energy-optimal traction calculation of the movement of trains]. Zheleznodorozhnyy transport [Railway transport]. 2010, vol. 2, pp. 24–29. (In Russian)

3. Baranov L. A., Sidorenko V. G., Balakina E. P. et al. Intellektual'noye tsen-tralizovannoye upravleniye dvizheniyem vneulichnogo gorodskogo zheleznodorozhnogo transporta v usloviyakh intensivnogo dvizheniya [In-telligent centralized traffic control of off-street urban railway transport in conditions of heavy traffic]. Nadezhnost' [Reliability]. 2021, vol. 2, pp. 17–23. DOI: doi.org/10.21683/1729-2646-2021-21-2-17-23. (In Russian), Baranov L. A., Sidorenko V. G., Balakina E. P. et al. Intellektual'noye tsen-tralizovannoye upravleniye dvizheniyem vneulichnogo gorodskogo zheleznodorozhnogo transporta v usloviyakh intensivnogo dvizheniya [In-telligent centralized traffic control of off-street urban railway transport in conditions of heavy traffic]. Nadezhnost' [Reliability]. 2021, vol. 2, pp. 17–23. DOI: doi.org/10.21683/1729-2646-2021-21-2-17-23. (In Russian)

4. Su R., Gu Q., Wen T. et al. Optimization of High-Speed Train Control Strategy for Traction Energy Saving Using an Improved Genetic Algorithm. Journal of Applied Mathematics, vol, 2014. DOI: doi.org/10.1155/2014/507308. URL: https://www.hindawi.com/journals/jam/2014/507308/., Su R., Gu Q., Wen T. et al. Optimization of High-Speed Train Control Strategy for Traction Energy Saving Using an Improved Genetic Algorithm. Journal of Applied Mathematics, vol, 2014. DOI: doi.org/10.1155/2014/507308. URL: https://www.hindawi.com/journals/jam/2014/507308/.

5. Liu P., Han B. Optimizing the train timetable with consideration of different kinds of headway time. Journal of Algorithms & Computational Technology, 2017, vol. 11(2), pp. 148–162. DOI: 10.1177/1748301816689685., Liu P., Han B. Optimizing the train timetable with consideration of different kinds of headway time. Journal of Algorithms & Computational Technology, 2017, vol. 11(2), pp. 148–162. DOI: 10.1177/1748301816689685.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3