Study and Simulation of a Thermal Photovoltaic Hybrid Sensor

Author:

Ouiminga Abdoul1ORCID,Bignan-Kagomna Bouwèreou1,Zon Mariatou2,Kam Sié1

Affiliation:

1. Laboratoire d’Energies Thermiques Renouvelables, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso

2. Laboratoire de Matériaux et Environnement, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso

Abstract

Photovoltaic systems have undergone many recent devel-opments in terms of improving their energy efficiency. One of these performance improvement innovations is: the com-bination of thermal exploitation of solar energy with photo-voltaic exploitation on the same sensor for the simultaneous production of heat and electricity. This study aims to study the electrical and thermal perfor-mances of the system by evaluating the electrical and ther-mal efficiency as well as the electrical power for a hybrid photovoltaic/thermal sensor. In this work, the results of an experimental and numerical study on the thermal behavior of the hybrid sensor are presented and discussed. The experimental study made it possible to determine the electrical characteristics of the PV/T, the sunshine and the ambient temperature for a typical day. The mathematical equations which govern the operating principle of our PV/T are described and solved using the RANGE KUNTA method of order 4 for a numerical study of the efficiency of our PV/T. The numerical results obtained indicate a thermal efficiency of our PVT of 10.5% for a speed of 5 m/s and 7.8% for a speed of 1m/s. Increasing the number of exchange tubes to cover the entire surface of the sensor makes it possible to improve the minimum efficiency from 7.8% to 11.68% for a wind speed of 1m/s. The results obtained suggest that this type of sensor constitutes a good alternative to photovoltaic modules and conventional thermal sensors installed separately.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3