New Functional Orbital-free Within DFT for Metallic Systems

Author:

Urso Vittoria1

Affiliation:

1. Department of Basic and Applied Sciences for Engineering, Sapienza University, Rome RM, Italy; Department of Physics, University of Modena and Reggio Emilia, Modena MO, Italy

Abstract

I present the continuation of a study on Laplacian Level Kinetic Energy (KE) functionals applied to metallic nanosystems. The development of novel Kinetic Energy functionals is an important topic in density functional theory (DFT). The nanoparticles are patterned using gelatin spheres of different sizes, background density and number of electrons. To reproduce the correct kinetic and potential energy density of the various nanoparticles, the use of semilocal descriptors is necessary. Need an explicit density functional expression for the kinetic energy of electrons, including the first e second functional derivative, i.e. the kinetic potential and the kinetic kernel, respectively. The exact explicit form of the non interacting kinetic energy, as a functional of the electron density, is known only for the homogeneous electron gas (HEG), i.e., the Thomas-Fermi (TF) local functional and for 1 and 2 electron systems, i.e., the von Weizsacker (VW) functional. In between these two extreme cases, different semilocal or non local approximations were developed in recent years. Most semilocal KE functionals are based on modifications of the second-order gradient expansion (GE2) or fourth-order gradient expansion (GE4). I find that the Laplacian contribute is fundamental for the description of the energy and the potential of nanoparticles. I propose a new LAP2 semilocal functional which, better than the previous ones, allows us to obtain fewer errors both of energy and potential. More details of the previous calculations can be found in my 2 previous works which will be cited in the text.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3