Assessing the Results of Satellite Positioning for Geodetic Network Points with Different Observation Sessions

Author:

Younes Sobhy1ORCID

Affiliation:

1. Public Works Engineering Department, Faculty of Engineering, Tanta University, Tanta City, Egypt; Higher Future Institute of Engineering and Technology in Mansoura, Mansoura City, Egypt

Abstract

Nowadays, static satellite observations are widely used in many fields. To obtain high measurement accuracy, the static satellite observations of the geodetic network have been carried out using one and two base stations. This study is important due to the lack of information on whether using several base stations impacts measurement accuracy. In addition, the dependence of the measurement accuracy of different lengths of the geodetic network lines on the observation time is investigated. Direct measurements have been carried out on the territory of Egypt, where the development of a geodetic network of the National Agricultural Cadastral Network (NACN) is a burning issue. The observations were conducted using Trimble R10 dual-frequency receivers based on specific schemes. In the case of using one base station, all the lines that connect the nearest points to the station were calculated. In the case where two stations were being used, the observations were carried out simultaneously on three points, including the base points. The third point is the closest point to the baseline. The other three points were determined as follows: two points had been taken from the previous triangle; and the one that was the nearest one to the line formed by the first two points, etc. The analysis of the results shows that if only one station is used, it takes at least 3–4 hours to make measurements that are precise up to a centimeter. The use of two base stations can reduce measurement time by two hours. Additionally, these studies can help select satellite positioning technology based on the equipment available.

Publisher

Science Publishing Group

Reference21 articles.

1. Anonymous, 2016, GPS, https://tr.wikipedia.org/wiki/GPS

2. Grewal, M. S., Weill, L. R., Andrews, A. P. Global Positioning Systems. Inertial Navigation, and Integration, Wiley, 2007.

3. Alkan, R. M., İlçi, V., Ozulu, M. PPP Yönteminde GPS and GLONASS. Uydularının Kullanımının Nokta Konum Doğruluğuna Etkisinin Araştırılması, Harita Teknolojileri Elektronik Dergisi, 2014, 6 (2), 27-34.(In Turkish)

4. Sümeyra, G., Ekrem, T. The Analysis of GPS Data in Different Observation Periods Using Online GNSS Process Services. International Journal of Environment and Geoinformatics (IJEGEO). 2017, Vol: 4 Issue: 1 January.

5. El-Rabbany, A. Introduction to GPS, the Global Positioning System. Artech House, USA, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3