Opinion — On a New Mechamistic Model Toward the Catalytic Reactions: From Hydrogen Combustion to Fischer-Tropsch Reaction

Author:

Sun Youyi1ORCID

Affiliation:

1. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; School of Chemistry, University of Glasgow, Glasgow, UK

Abstract

Mechanism research in catalytic chemistry is both fascinating and confusing, particularly when it comes to solid-state catalysts, the nature of catalytic behaviours has been unidentified so far. For a mechanistic model to be acceptable, it should have an ability to explain all unique aspects of a given catalytic reaction and provide an illuminating explanation to a widely range of catalytic reaction. In our recent reports, a new mechanistic model was suggested for catalytic CO<sub>2</sub> reduction reaction on Cu metal and hydrogen evolution reaction on various transition metals, which provides a reasonable interpretation to both catalytic reactions (from the diversity of product distribution and catalytic behaviour of various metals). Here, it is expected to extend this new mechanistic model to a wider range of catalytic reactions over various catalysts. Such as hydrogen combustion with Cu metal adding, oxidation of SO<sub>2</sub> by O<sub>2</sub> to give SO<sub>3</sub> with NO adding, conversion of CO and NO into CO<sub>2</sub> and N<sub>2</sub> with Ru metal adding, and hydrogeneration of propylene with Pt metal adding. Importantly, this model seems also to pertain to the mechanism of the Fischer-Tropsch (T-F) reaction, i.e. the conversion of CO and H<sub>2</sub> to hydrocarbons, principally a mixture of linear alkanes (including methane) and alkenes, by passage over various heterogeneous transition-metal catalysts (Fe, Co, Ni et.al.).

Publisher

Science Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3