Development of an Expert System for Diagnosing Musculoskeletal Disease

Author:

Egereonu Sunny1ORCID,Ekedebe Nnanna1,Otuonye Anthony1ORCID,Etus Chukwuemeka1ORCID,Amadi Emmanuel1ORCID,Egereonu Ubaezue1

Affiliation:

1. Department of Information Technology, Federal University of Technology, Owerri, Nigeria

Abstract

Musculoskeletal diseases (MSDs), encompasses various conditions affecting muscles, bones, tendons, ligaments, and joints, resulting to pain, inflammation, and limited mobility, significantly impacting individuals' quality of life. Diagnosing these diseases poses a challenge for healthcare professionals due to symptom similarities with other conditions. To address this, the development of expert systems tailored for musculoskeletal diagnosis has emerged as a promising approach to enhance clinical decision-making and improve patient outcomes. This study aims at developing and evaluating an expert system for musculoskeletal disease diagnosis, by leveraging a knowledge base containing information on common musculoskeletal diseases and symptoms. The system utilized a combination of rule-based and machine learning techniques to provide diagnostic recommendations to physicians. Comparative analysis with experienced physicians, using a dataset of patients with known musculoskeletal diseases, revealed the expert system’s diagnostic accuracy of 92%, recall of 98%, Precision of 91%, F1-Score of 94% and a quicker diagnosis compared to physicians. Additionally, the system demonstrated ease of use and user-friendliness. This project focuses on predictive algorithms, leveraging expert systems dating back to the 1970s, emulating human expert decision-making, particularly in disease diagnosis. The development of an expert system for musculoskeletal disease diagnosis symbolizes the convergence of medical expertise, computer science, and artificial intelligence. By integrating machine learning, natural language processing, and decision support systems, these expert systems have the potential to revolutionize musculoskeletal healthcare delivery. In conclusion, our results show that expert systems hold promise in transforming clinical practice and improving patient outcomes in musculoskeletal healthcare through interdisciplinary collaboration and continuous innovation.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3