Thermal Insulation of “akassa” Hot Preservation Baskets Using Cow Dung Coatings

Author:

Mededji Daniel1ORCID,Sogbochi Elie2ORCID,Djossou Ayihaou3,Fagbemi Latif4,Sohounhloue Dominique2ORCID

Affiliation:

1. Laboratory of Study and Research in Applied Chemistry, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin; BioMedical Engineering Department, University of Abomey-Calavi, Cotonou, Benin

2. Laboratory of Study and Research in Applied Chemistry, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin

3. Laboratory of Process and Technological Innovation, National Institute of Industrial Technology, Lokossa, Benin

4. BioMedical Engineering Department, University of Abomey-Calavi, Cotonou, Benin

Abstract

The use of eco-materials for thermal insulation is becoming more and more recommended compared with synthetic materials. They have the advantage of being biodegradable and sometimes less expensive. To this end, the use of packaging with the function of hot preservatives but made from local and biodegradable materials is a very interesting alternative to synthetic enclosures. This work involved formulating eco-materials made from cow dung coatings and a mixture of cow dung coatings with a framework of fibres extracted from the stalks of oil palm leaves. In addition, to monitor the temperature rise in the various eco-materials manufactured and characterise them using the hot ribbon method to determine their effusivity and thermal conductivity. The pair of materials exposed to heating showed a gradual rise in temperature within the materials when the resistor was energised. A slightly faster rise was observed in the first fifty minutes. The results obtained indicate that the cow dung has a higher effusivity (E = 517.32 J.m<sup>-2</sup>. °C<sup>-1</sup>. s<sup>-1/2</sup>) than its composite (E = 501.20 J.m<sup>-2</sup>. °C<sup>-1</sup>. s<sup>-1/2</sup>). The thermal conductivity values obtained indicate that the cow dung has a higher thermal conductivity (λ'=0.19 W.m^(-1).K^(-1)) than that of the composite structure (λ=0.15 W.m^(-1).K^(-1)). From the above, the presence of the fibre frame has the effect of reducing thermal conductivity because it absorbs more energy. The materials produced therefore have proven insulating properties, which are improved when the framework is made from fibres extracted from the stalks of oil palm leaves. Using oil palm fibres in combination with cow dung as eco-materials for thermal insulation is an excellent alternative to synthetic insulation.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3