Trajectory Optimization and Power Allocation Scheme for a UAV Relay-aided Network in the Presence of an Eavesdropper

Author:

Jishan-E-Giti null1,Chowdhury Shah Ariful Hoque2,Moon Al-Hadith1

Affiliation:

1. Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh

2. Department of Electronics and Telecommunication Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh

Abstract

The information theoretical security for a cellular network in the presence of an eavesdropper is investigated in this research. The network is single-input-single-output (SISO) in nature. A small unmanned aerial vehicle (UAV) is aiding the network as a relay that follows the decode-and-forward (DF) protocol. The relay decodes the transmitted signal and retransmits it to the destination while repositioning itself if required. The allotted power of the UAV may not be enough for long-distance and long-duration travel. This article deals with the power needed for the data transmission so that the UAV can operate as a relay with less transmit power. However, the confidential data transmission between a base station and a mobile device is being intercepted by a passive eavesdropper. The security issue affects the transmit power and the outage situation. The theory of physical layer security is employed to ensure a secure wireless transmission. The secrecy parameters, namely, the secrecy capacity and the secrecy outage probability are investigated via mathematical derivations and computer programming. Additionally, optimizing the trajectory and allocation of the transmit power budget of the UAV will increase the network’s reliability. Our results show that the UAV relay can handle a secure transmission with its limited resources if a budget power allocation can be achieved along with an optimized trajectory.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3