A Review of Integration Techniques of Multi-Geoscience Data-Sets in Mineral Prospectivity Mapping

Author:

Katiyar Neelesh1ORCID,Kulshreshtha Asita2ORCID,Singh Pramod3ORCID

Affiliation:

1. Engineering Division, Geological Survey of India, Lucknow, India; Amity School of Applied Sciences, Amity University, Lucknow, India

2. Amity School of Applied Sciences, Amity University, Lucknow, India

3. Mission- III, Geological Survey of India, Kolkata, India

Abstract

In every sphere and utility aspects of human life, there is need of metals and construction materials. Minerals which are below the near subsurface is almost explored on the basis of direct geospatial evidences. There is high demand of metals and other materials which are mined below the surface of earth In the current landscape, there's a demand for faster and more precise exploration strategies, particularly emphasizing Greenfield exploration and deep-seated mineralization. This paper conducts a comprehensive review of existing methodologies for integrating multi-geoscience datasets aimed at mineral prognostication, with a focus on identifying the most precise and authentic Artificial Intelligence (AI) - based data integration techniques. Additionally, it offers insights into the current status of mineral exploration in India and the global evolution of data integration practices. Several types of geoscientific datasets i.e. geological, geophysical, geochemical and geospectral data have to be organized in geospatial domain for meaningful mineral exploration outcome. These datasets have been processed to extract exploratory indicator layers for data integration are called Mineral Prospectivity Mapping (MPM). Indeed, MPM is a multiple criterion decision making (MCDM) task which provide a predictive model for categorizing of sought areas in terms of ore mineralization. There after based upon Geological factors i.e. lithology, structure, shear & fault zones, alteration zones etc. of sought mineralized area, selection of drilling parameters (depth, angle, level, type, rpm, feed) is done for resource assessment. Literature survey suggests that minerals exploration by integrated approach on the basis of these datasets is still poorly performed. It has been gathered that knowledge-driven data integration using Fuzzy Gamma Operator and Multiclass Index Overlay method is best suited for mineral exploration. In past, few researchers of other countries have exploited data integration approach with encouraging results. Despite the abundance of data available in India, this approach has not been utilized very successfully and no standard protocols exist even for decision making for drilling operation. Thus, it's evident that employing the Fuzzy Inference System (FIS) algorithm, particularly utilizing the Fuzzy Gamma Operator and Multiclass Index Overlay integration method, remains underutilized in designing standardized operating procedures (SOP) for mineral exploration in India and decision-making for drilling operations. This approach holds promise for minimizing time lag and optimizing resources such as manpower, instruments, and finances.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3