Study on the Transport and Transformation Law of CO<sub>2</sub> Marine Storage in Reservoirs with Various Permeability Anisotropy

Author:

Xia Yongqiang1,Gao Peng1,Jiang Zhibo1,Fan Qi2,Wei Rupeng1,Li Qingping2,Zhang Lunxiang1,Yu Tao1,Yang Lei1,Song Yongchen1

Affiliation:

1. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian, China

2. State Key Laboratory of Natural Gas Hydrate, China National Offshore Oil Corporation, Beijing, China

Abstract

There is an international consensus to reduce the pace of global warming caused by greenhouse gases, such as CO<sub>2</sub>.The geological storage of CO<sub>2</sub> plays a crucial role in reducing the atmospheric CO<sub>2</sub> concentration, and hydrate-based CO<sub>2</sub> storage is an important geological storage technology applied to seabed sediments, which has attracted increasing attention due to its advantages of high safety and large storage capacity. In this study, a large-scale numerical simulator applicable to CO<sub>2</sub> hydrate storage is developed, which considers the two-phase flow process including hydrate formation and realizes the coupling of the thermal-fluidic-chemical three fields, and further investigates the transport and transformation behavior of CO<sub>2</sub> in the reservoir with anisotropic permeability during the injection period and at the cessation of injection. The results show that the formation of CO<sub>2</sub> hydrate can easily generate local high-pressure zones and local high-temperature zones inside the reservoir; the CO<sub>2</sub> hydrate cap formed above the wellhead can limit the vertical transport distance of CO<sub>2</sub> and ensure the safe storage of CO<sub>2</sub>. In addition, this study also analyzed the efficiency of CO<sub>2</sub> hydrate storage in different permeability anisotropic reservoirs and found that high <I>K</I><sub>hv</sub> reservoirs are more conducive to CO<sub>2</sub> conversion in the long term. This study can provide scientific value for the hydrate-based CO<sub>2</sub> storage in the ocean and a theoretical basis for the transport behavior of CO<sub>2</sub> in submarine reservoirs.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3