A Hybrid Extreme Gradient Boosting Model for Credit Risk Modelling in the Presence of Inflation

Author:

Langat Kenneth Kiprotich1,Waititu Anthony Gichuhi2,Ngare Philip Odhiambo3

Affiliation:

1. Department of Mathematics, Pan African Institute of Basic Science Technology and Innovation, Nairobi, Kenya; Department of Mathematics, Egerton University, Nakuru, Kenya

2. Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

3. Department of Mathematics, University of Nairobi, Nairobi, Kenya

Abstract

The recent developments in the credit and banking industry brought by technology has led to increased competition and the rise of risks and challenges. Credit scoring is one of the core items that keeps this industry competitive and profitable. The creation of credit score models to assess the ability of the loan applicant to repay his or her loan remains an active field of research. Practically, the existing models ignore the factor of inflation in determining the credit score of a loan applicant. Inflation affect the performance of the financing institution negatively because it makes some of the borrowers struggle to repay the loan and so leading to some bad debts that might end up being written off. By integrating the inflation factor to the Extreme gradient boosting algorithm led to improved accuracy of the model. In this paper, a new model that uses the inflation rate of a specific region or country in the regularization term of the extreme gradient boosting model has been developed. The evaluation of the model is by comparison with the other common models using ROC, Accuracy, precision and recall. The developed model emerge the second best in terms of performance but better than the standard extreme gradient boosting model.

Publisher

Science Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3