The Effect of Incremental Scaffolds in Experimentation on Cognitive Load

Author:

Hülsmann Marlina1ORCID,Stiller Cornelia2ORCID,Wilde Matthias1ORCID

Affiliation:

1. Faculty of Biology, Bielefeld University, Bielefeld, Germany

2. Faculty of Educational Science, Bielefeld University, Bielefeld, Germany

Abstract

Experimentation provides a suitable way for students to gain an understanding of scientific inquiry since it is one of its main methods to develop scientific knowledge. However, it is assumed that experimentation can lead to cognitive overload when students experience little support during experimentation, which, in turn, might hinder effective learning. Extraneous cognitive load describes the load caused by inefficient instructional designs such as unguided problem-solving or the way information is presented and thus can be influenced by appropriate instructions. In order to prevent students from cognitive overload and assist them during experimentation, they can be provided with incremental scaffolds, which are sequential written solution instructions. The present study investigates the extent to which the use of incremental scaffolds affects learners’ cognitive load during experimentation in biology classes. The students in the Incremental Scaffolds Group (IncrS; n = 54) used incremental scaffolds in two self-conducted experiments while students of the No-Incremental Scaffolds Group (No-IncrS; n = 74) experimented openly without such a support. Both groups were provided with a pre-structured researcher protocol including the steps of experimentation and received the same lessons. Extraneous cognitive load was assessed after both experiments using a self-developed questionnaire consisting of two items. These were designed to assess how cognitive load was affected by the learning materials. The findings only revealed a significant main effect of time between the two conducted experiments, but no significant interaction effect with the treatment. Consequently, the results show that repeated experimentation reduces cognitive load during experimentation, regardless of the provision of incremental scaffolds. The positive effects of incremental scaffolds, thus possibly also concerning cognitive load, are assumed to occur only after multiple applications; hence, they might need to be applied more frequently and regularly to really become practiced. Two sessions of experimenting with incremental scaffolds seem to be insufficient for providing learners with substantial support, as students may need more time to fully adjust to utilizing the incremental scaffolds. Furthermore, a brief reflection phase on the use of incremental scaffolds at the end of each lesson in which they were used appears to be helpful. If incremental scaffolds can free up working memory, it may also be useful to consider the relation between incremental scaffolds, cognitive load, and knowledge acquisition.

Publisher

Science Publishing Group

Reference69 articles.

1. Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of expert community. Journal of Research in Science Teaching, 40(7), 692–720.

2. National Research Council (NRC). (1996). National science education standards. Washington, DC: National Academy Press.

3. KMK (Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland). (2005). Beschlüsse der Kultusministerkonferenz. Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss. Beschluss vom 16.12.2004. München: Luchterhand.

4. Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H. (2004). Inquiry in science education: International perspectives. Science Education, 88, 397–419.

5. Klahr, D. (2000). Exploring science: The cognition and development of discovery processes. Cambridge: MIT Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3