Expiry date recognition using deep neural networks

Author:

Rebedea Traian1,Florea Vlad1

Affiliation:

1. University POLITEHNICA of Bucharest

Abstract

This paper proposes a deep learning solution for optical character recognition, specifically tuned to detect expiration dates that are printed on the packaging of food items. This method can be used to reduce food waste, having a significant impact on the design of smart refrigerators and can prove especially useful for persons with vision difficulties, by combining it with a speech synthesis engine. The main problem in designing an efficient solution for expiry date recognition is the lack of a large enough dataset to train deep neural networks. To tackle this issue, we propose to use an additional dataset composed of synthetically generated images. Both the synthetic and real image datasets are detailed in the paper and we show that the proposed method offers a 9.4% accuracy improvement over using real images alone.

Publisher

Matrix Rom

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Approach for Seamless Reminder Apps for Expiry date with QR.;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

2. EyeSpeak (An Application for Visually impaired);International Journal of Advanced Research in Science, Communication and Technology;2024-04-20

3. Eye Support: AI Enabled Support System for Visually Impaired Senior Citizens;Communications in Computer and Information Science;2024

4. Expiration Date Recognition System Using Spatial Transformer Network for Visually Impaired;Lecture Notes in Computer Science;2024

5. Recognition of expiry data on food packages based on improved DBNet;Connection Science;2023-04-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3