The effect of screw head design on rod derotation in the correction of thoracolumbar spinal deformity

Author:

Lam Fred C.1,Groff Michael W.2,Alkalay Ron N.3

Affiliation:

1. Division of Neurosurgery, Beth Israel Deaconess Medical Center;

2. Department of Neurosurgery, Brigham and Women's Hospital; and

3. Center for Advanced Orthopaedic Studies, Department of Orthopaedics, Beth Israel Deaconess Medical Center, Boston, Massachusetts

Abstract

Object The use of fixed-axis pedicle screws for correction of thoracolumbar deformity in adult surgery is demanding because of the challenge of assembling the bent rod to the screw in order to achieve curve correction. Polyaxial screw designs, providing increased degrees of freedom at the screw-rod interface, were reported to be insufficient in achieving correction of thoracic deformity in the axial plane. Using a multisegment bovine calf spine model, this study investigated the ability of a new uniplanar screw design to achieve derotation correction of the vertebrae and maintain a degree of correction comparable to that of fixed-axis and polyaxial screw designs. Methods Eighteen calf thoracolumbar spine segments from T-6 to L-1 (n = 6 per screw design) underwent bilateral facetectomies at the T9–11 levels and were instrumented bilaterally with pedicle screws and rods. To assess the efficacy of each screw design in imparting rotational correction, each instrumented level was tested under applied torsional moments designed to simulate the motion applied during derotation surgery. Once rotation was achieved, the whole spine was tested to assess the overall stiffness of the construct. Results The fixed-axis construct showed increased efficacy in imparting rotation compared with the uniplanar (115% increase, p > 0.05) and polyaxial (210% increase, p < 0.05) constructs. Uniplanar screws showed a 21% increase in torsional stiffness compared with the polyaxial screws, but this difference was not statistically significant. Conclusions The design of screw heads plays a significant role in affecting the rotation of the vertebrae during the derotation procedure. Uniplanar screws may have the advantage of maintaining construct stiffness after derotation.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3