Dosimetric characterization of hypofractionated Gamma Knife radiosurgery of large or complex brain tumors versus linear accelerator–based treatments

Author:

Dong Peng12,Pérez-Andújar Angélica1,Pinnaduwage Dilini3,Braunstein Steve1,Theodosopoulos Philip4,McDermott Michael4,Sneed Penny1,Ma Lijun1

Affiliation:

1. Departments of Radiation Oncology and

2. Department of Radiation Oncology, Stanford University, Stanford, California; and

3. Department of Radiation Oncology, The University of Arizona School of Medicine and St. Joseph's Hospital and Medical Center, Phoenix, Arizona

4. Neurosurgery, University of California, San Francisco;

Abstract

OBJECTIVENoninvasive Gamma Knife (GK) platforms, such as the relocatable frame and on-board imaging, have enabled hypofractionated GK radiosurgery of large or complex brain lesions. This study aimed to characterize the dosimetric quality of such treatments against linear accelerator–based delivery systems that include the CyberKnife (CK) and volumetric modulated arc therapy (VMAT).METHODSTen patients treated with VMAT at the authors' institution for large brain tumors (> 3 cm in maximum diameter) were selected for the study. The median prescription dose was 25 Gy (range 20–30 Gy) in 5 fractions. The median planning target volume (PTV) was 9.57 cm3 (range 1.94–24.81 cm3). Treatment planning was performed using Eclipse External Beam Planning V11 for VMAT on the Varian TrueBeam system, Multiplan V4.5 for the CyberKnife VSI System, and Leksell GammaPlan V10.2 for the Gamma Knife Perfexion system. The percentage of the PTV receiving at least the prescription dose was normalized to be identical across all platforms for individual cases. The prescription isodose value for the PTV, conformity index, Paddick gradient index, mean and maximum doses for organs at risk, and normal brain dose at variable isodose volumes ranging from the 5-Gy isodose volume (V5) to the 15-Gy isodose volume (V15) were compared for all of the cases.RESULTSThe mean Paddick gradient index was 2.6 ± 0.2, 3.2 ± 0.5, and 4.3 ± 1.0 for GK, CK, and VMAT, respectively (p < 0.002). The mean V15 was 7.5 ± 3.7 cm3 (range 1.53–13.29 cm3), 9.8 ± 5.5 cm3 (range 2.07–18.45 cm3), and 16.1 ± 10.6 cm3 (range 3.58–36.53 cm3) for GK, CK, and VMAT, respectively (p ≤ 0.03, paired 2-tailed t-tests). However, the average conformity index was 1.18, 1.12, and 1.21 for GK, CK, and VMAT, respectively (p > 0.06). The average prescription isodose values were 52% (range 47%–69%), 60% (range 46%–68%), and 88% (range 70%–94%) for GK, CK, and VMAT, respectively, thus producing significant variations in dose hot spots among the 3 platforms. Furthermore, the mean V5 values for GK and CK were similar (p > 0.79) at 71.9 ± 36.2 cm3 and 73.3 ± 31.8 cm3, respectively, both of which were statistically lower (p < 0.01) than the mean V5 value of 124.6 ± 67.1 cm3 for VMAT.CONCLUSIONSSignificantly better near-target normal brain sparing was noted for hypofractionated GK radiosurgery versus linear accelerator–based treatments. Such a result supports the use of a large number of isocenters or confocal beams for the benefit of normal tissue sparing in hypofractionated brain radiosurgery.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3