Effect of hyperglycemia on apoptosis of notochordal cells and intervertebral disc degeneration in diabetic rats

Author:

Won Ho-Yeon1,Park Jong-Beom1,Park Eun-Young1,Riew K. Daniel2

Affiliation:

1. Department of Orthopaedic Surgery, College of Medicine, Catholic University of Korea, Seoul, Korea; and

2. Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri

Abstract

Object Diabetes mellitus is thought to be an important etiologic factor in intervertebral disc degeneration. It is known that notochordal cells gradually disappear from the nucleus pulposus (NP) of the intervertebral disc with age by undergoing apoptosis. What is not known is whether diabetes has an effect on apoptotic rates of notochordal cells. The purpose of this study was to investigate the effect of hyperglycemia on apoptosis of notochordal cells and intervertebral disc degeneration in age-matched OLETF (diabetic) and LETO (control) rats. Methods Lumbar disc tissue (L1–2 through L5–6), including cranial and caudal cartilaginous endplates, was obtained from 6- and 12-month-old OLETF and LETO rats (40 rats, 10 in each of the 4 groups). The authors examined the NP using TUNEL, histological analysis, and Western blot for expression of matrix metalloproteinase (MMP)–1, -2, -3, and -13, tissue inhibitor of metalloproteinase (TIMP)–1 and -2, and Fas (apoptosis-related protein). The apoptosis index of notochordal cells was calculated. The degree of transition of notochordal NP to fibrocartilaginous NP was classified on a scale ranging from Grade 0 (no transition) to Grade 4 (transition > 75%). The degree of expression of MMP-1, -2, -3, and -13, TIMP-1 and -2, and Fas was evaluated by densitometry. Results At 6 and 12 months of age, OLETF rats showed increased body weight and abnormal 2-hour glucose tolerance tests compared with LETO rats. The apoptosis index of notochordal cells was significantly higher in the OLETF rats than in the LETO rats at both 6 and 12 months of age. The degree of transition of notochordal NP to fibrocartilaginous NP was significantly higher in the OLETF rats than in the LETO rats at 6 and 12 months of age. The expression of MMP-1, -2, -3, and -13, TIMP-1, and Fas was higher in the OLETF rats at 6 and 12 months of age. The expression of TIMP-2 was significantly higher in the OLETF rats than in the LETO rats at 6 months of age, but not at 12. Conclusions The findings suggest that diabetes is associated with premature, excessive apoptosis of NP notochordal cells. This results in an accelerated transition of a notochordal NP to a fibrocartilaginous NP, which leads to early intervertebral disc degeneration. It remains to be determined if these premature changes are due to hyperglycemia or some other factors associated with diabetes. Understanding the mechanism by which diabetes affects disc degeneration is the first step in designing therapeutic modalities to delay or prevent disc degeneration caused by diabetes mellitus.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3