Affiliation:
1. Departments of Mechanical & Aerospace Engineering,
2. Canon Stroke and Vascular Research Center, University at Buffalo, the State University of New York, Buffalo, New York
3. Biomedical Engineering, and
4. Neurosurgery,
5. Biomedical Informatics and
Abstract
OBJECTIVEFlow diverters (FDs) are designed to occlude intracranial aneurysms (IAs) while preserving flow to essential arteries. Incomplete occlusion exposes patients to risks of thromboembolic complications and rupture. A priori assessment of FD treatment outcome could enable treatment optimization leading to better outcomes. To that end, the authors applied image-based computational analysis to clinically FD-treated aneurysms to extract information regarding morphology, pre- and post-treatment hemodynamics, and FD-device characteristics and then used these parameters to train machine learning algorithms to predict 6-month clinical outcomes after FD treatment.METHODSData were retrospectively collected for 84 FD-treated sidewall aneurysms in 80 patients. Based on 6-month angiographic outcomes, IAs were classified as occluded (n = 63) or residual (incomplete occlusion, n = 21). For each case, the authors modeled FD deployment using a fast virtual stenting algorithm and hemodynamics using image-based computational fluid dynamics. Sixteen morphological, hemodynamic, and FD-based parameters were calculated for each aneurysm. Aneurysms were randomly assigned to a training or testing cohort in approximately a 3:1 ratio. The Student t-test and Mann-Whitney U-test were performed on data from the training cohort to identify significant parameters distinguishing the occluded from residual groups. Predictive models were trained using 4 types of supervised machine learning algorithms: logistic regression (LR), support vector machine (SVM; linear and Gaussian kernels), K-nearest neighbor, and neural network (NN). In the testing cohort, the authors compared outcome prediction by each model trained using all parameters versus only the significant parameters.RESULTSThe training cohort (n = 64) consisted of 48 occluded and 16 residual aneurysms and the testing cohort (n = 20) consisted of 15 occluded and 5 residual aneurysms. Significance tests yielded 2 morphological (ostium ratio and neck ratio) and 3 hemodynamic (pre-treatment inflow rate, post-treatment inflow rate, and post-treatment aneurysm averaged velocity) discriminants between the occluded (good-outcome) and the residual (bad-outcome) group. In both training and testing, all the models trained using all 16 parameters performed better than all the models trained using only the 5 significant parameters. Among the all-parameter models, NN (AUC = 0.967) performed the best during training, followed by LR and linear SVM (AUC = 0.941 and 0.914, respectively). During testing, NN and Gaussian-SVM models had the highest accuracy (90%) in predicting occlusion outcome.CONCLUSIONSNN and Gaussian-SVM models incorporating all 16 morphological, hemodynamic, and FD-related parameters predicted 6-month occlusion outcome of FD treatment with 90% accuracy. More robust models using the computational workflow and machine learning could be trained on larger patient databases toward clinical use in patient-specific treatment planning and optimization.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Subject
Neurology (clinical),General Medicine,Surgery
Reference38 articles.
1. An introduction and overview of machine learning in neurosurgical care;Senders;Acta Neurochir (Wien),2018
2. Endovascular occlusion of intracranial aneurysms with electrically detachable coils: correlation of aneurysm neck size and treatment results;Fernandez Zubillaga;AJNR Am J Neuroradiol,1994
3. 3D deep learning angiography (3D-DLA) from C-arm conebeam CT;Montoya;AJNR Am J Neuroradiol,2018
4. Distinct ECG phenotypes identified in hypertrophic cardiomyopathy using machine learning associate with arrhythmic risk markers;Lyon;Front Physiol,2018
5. Fast virtual stenting with vessel-specific initialization and collision detection;Paliwal,2014
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献