Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury

Author:

Enevoldsen Erna M.,Jensen Finn T.

Abstract

✓ Regional cerebral blood flow (rCBF), cerebral intraventricular pressure (IVP), systemic arterial blood pressure, and cerebral ventricular fluid (CSF) lactate and pH were studied repeatedly in 23 patients during the acute phase of severe brain injury lasting from 3 to 21 days after the trauma. Cerebrovascular autoregulation was tested repeatedly by means of angiotensin infusion in 21 of the patients, and CO2 response in 14 by means of passive hyperventilation. The pressure in the brain ventricles was measured continuously in all patients and kept below 45 mm Hg during the study. If the IVP increased more than 10 mm Hg during the angiotensin infusion (as in one case), the autoregulation test was considered contraindicated and the angiotensin infusion was discontinued. Dissociation between cerebrovascular autoregulation and CO2 response was a common phenomenon. Typically, autoregulation appeared preserved in the most severely injured areas of the cerebral cortex when the patient was deeply comatose, but deteriorated concomitantly with recovery; by the time the patient became alert, the autoregulation was always impaired. The CO2 response was impaired only in patients who were deeply comatose and had attacks of decerebrate rigidity; during recovery the CO2 response became normal. Thus, preserved autoregulation associated with impaired CO2 response indicated very severe brain damage, whereas impaired autoregulation associated with preserved CO2 response suggested moderate or severe brain damage in recovery. These paradoxical observations raise the question whether the preserved autoregulation seen in severely injured brain tissue is a true autoregulation caused by an active vasoconstrictor response to an increase in blood pressure.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Cited by 317 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3