Ischemic depolarization monitoring: evaluation of protein synthesis in the hippocampal CA1 after brief unilateral ischemia in a gerbil model

Author:

Sorimachi Takatoshi,Abe Hiroshi,Takeuchi Shigekazu,Tanaka Ryuichi

Abstract

Object. The authors investigate whether depolarization monitoring is an accurate index of ischemic damage in a gerbil model of unilateral ischemia and assess the effects of brief cerebral ischemia on protein synthesis in this model. Methods. The authors evaluate the relationship between the duration of ischemic depolarization caused by unilateral carotid artery occlusion and ischemia-induced neuronal damage in the CA1 subregion 7 days after ischemia. When the depolarization period exceeded 210 seconds, some neuronal damage was detected, and almost complete neuronal damage was observed when the period exceeded 400 seconds. Uptake of [14C]valine was evaluated in ischemic and nonischemic CA1 subregions. Disturbances in protein synthesis were seen in all animals subjected to sublethal ischemia (≤ 210-second depolarization) after a 10-minute recirculation, and after 2 and 6 hours of recirculation in animals with 90 seconds or more of depolarization. Inhibition of protein synthesis was proportional to the length of the depolarization period. After 1 and 3 days of recirculation, protein synthesis returned to near normal, and some animals with depolarizations greater than 180 to 210 seconds showed an increase in protein synthesis. Protein synthesis in all animals returned to normal levels after 7 days of recirculation. Conclusions. In this study the authors demonstrate that monitoring of ischemic depolarization is a useful method to predict neuronal damage in the hippocampal CA1 in this model, and they identify subtle changes in protein synthesis after brief ischemia. Sublethal ischemia was divided into three categories by its depolarization period (< 90 seconds, 90–180 seconds, and > 180–210 seconds) with regard to changes in protein synthesis.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3