Scalable culture techniques to generate large numbers of purified human Schwann cells for clinical trials in human spinal cord and peripheral nerve injuries

Author:

Khan Aisha12,Diaz Anthony13,Brooks Adriana E.12,Burks S. Shelby13,Athauda Gagani4,Wood Patrick13,Lee Yee-Shuan2,Silvera Risset12,Donaldson Maxwell12,Pressman Yelena1,Anderson Kim D.5,Bunge Mary Bartlett136,Pearse Damien D.1327,Dietrich W. Dalton1368,Guest James D.13,Levi Allan D.13

Affiliation:

1. The Miami Project to Cure Paralysis,

2. Interdisciplinary Stem Cell Institute, and Departments of

3. Department of Neurological Surgery,

4. Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida; and

5. Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Institute for Functional Restoration, Case Western Reserve University School, Cleveland, Ohio

6. Cell Biology and

7. Bruce W. Carter Department of Veterans Affairs, Veterans Affairs Medical Center, Miami;

8. Neurology, University of Miami Miller School of Medicine, Miami;

Abstract

OBJECTIVE Schwann cells (SCs) have been shown to play an essential role in axon regeneration in both peripheral nerve injuries (PNIs) and spinal cord injuries (SCIs). The transplantation of SCs as an adjunctive therapy is currently under investigation in human clinical trials due to their regenerative capacity. Therefore, a reliable method for procuring large quantities of SCs from peripheral nerves is necessary. This paper presents a well-developed, validated, and optimized manufacturing protocol for clinical-grade SCs that are compliant with Current Good Manufacturing Practices (CGMPs). METHODS The authors evaluated the SC culture manufacturing data from 18 clinical trial participants who were recruited for autologous SC transplantation due to subacute SCI (n = 7), chronic SCI (n = 8), or PNIs (n = 3). To initiate autologous SC cultures, a mean nerve length of 11.8 ± 3.7 cm was harvested either from the sural nerve alone (n = 17) or with the sciatic nerve (n = 1). The nerves were digested with enzymes and SCs were isolated and further expanded in multiple passages to meet the dose requirements for transplantation. RESULTS An average yield of 87.2 ± 89.2 million cells at P2 and 150.9 ± 129.9 million cells at P3 with high viability and purity was produced. Cell counts and rates of expansion increased with each subsequent passage from P0 to P3, with the largest rate of expansion between P2 and P3. Larger harvest nerve lengths correlated significantly with greater yields at P0 and P1 (p < 0.05). In addition, a viability and purity above 90% was sustained throughout all passages in nearly all cell products. CONCLUSIONS This study presents reliable CGMP-compliant manufacturing methods for autologous SC products that are suitable for regenerative treatment of patients with SCI, PNI, or other conditions.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3