Biomechanical effects of a novel posteriorly placed sacroiliac joint fusion device integrated with traditional lumbopelvic long-construct instrumentation

Author:

de Andrada Pereira Bernardo1,Lehrman Jennifer N.1,Sawa Anna G. U.1,Lindsey Derek P.2,Yerby Scott A.2,Godzik Jakub3,Waguespack Alexis M.4,Uribe Juan S.3,Kelly Brian P.1

Affiliation:

1. Department of Neurosurgery, Spinal Biomechanics Laboratory, and

2. SI-BONE, Santa Clara, California; and

3. Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona;

4. SpineCare Medical Group, New Orleans, Louisiana

Abstract

OBJECTIVE S2-alar-iliac (S2AI) screw fixation effectively ensures stability and enhances fusion in long-segment constructs. Nevertheless, pelvic fixation is associated with a high rate of mechanical failure. Because of the transarticular nature of the S2AI screw, adding a second point of fixation may provide additional stability and attenuate strains. The objective of the study was to evaluate changes in stability and strain with the integration of a sacroiliac (SI) joint fusion device, implanted through a novel posterior SI approach, supplemental to posterior long-segment fusion. METHODS L1-pelvis human cadaveric specimens underwent pure moment (7.5 Nm) and compression (400 N) tests in the following conditions: 1) intact, 2) L2–S1 pedicle screw and rod fixation with L5–S1 interbody fusion, 3) added S2AI screws, and 4) added bilateral SI joint fixation (SIJF). The range of motion (ROM), rod strain, and screw bending moments (S1 and S2AI) were analyzed. RESULTS S2AI fixation decreased L2–S1 ROM in flexion-extension (p ≤ 0.04), L5–S1 ROM in flexion-extension and compression (p ≤ 0.004), and SI joint ROM during flexion-extension and lateral bending (p ≤ 0.03) compared with S1 fixation. SI joint ROM was significantly less with SIJF in place than with the intact joint, S1, and S2AI fixation in flexion-extension and lateral bending (p ≤ 0.01). The S1 screw bending moment decreased following S2AI fixation by as much as 78% in extension, but with statistical significance only in right axial rotation (p = 0.03). Extending fixation to S2AI significantly increased the rod strain at L5–S1 during flexion, axial rotation, and compression (p ≤ 0.048). SIJF was associated with a slight increase in rod strain versus S2AI fixation alone at L5–S1 during left lateral bending (p = 0.048). Compared with the S1 condition, fixation to S2AI increased the mean rod strain at L5–S1 during compression (p = 0.048). The rod strain at L5–S1 was not statistically different with SIJF compared with S2AI fixation (p ≥ 0.12). CONCLUSIONS Constructs ending with an S2AI screw versus an S1 screw tended to be more stable, with reduced SI joint motion. S2AI fixation decreased the S1 screw bending moments compared with fixation ending at S1. These benefits were paired with increased rod strain at L5–S1. Supplementation of S2AI fixation with SIJF implants provided further reductions (approximately 30%) in the sagittal plane and lateral bending SI joint motion compared with fixation ending at the S2AI position. This stability was not paired with significant changes in rod or screw strains.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3