Enhancement of antitumor activity by using 5-ALA–mediated sonodynamic therapy to induce apoptosis in malignant gliomas: significance of high-intensity focused ultrasound on 5-ALA-SDT in a mouse glioma model

Author:

Suehiro Satoshi1,Ohnishi Takanori2,Yamashita Daisuke1,Kohno Shohei1,Inoue Akihiro1,Nishikawa Masahiro1,Ohue Shiro3,Tanaka Junya4,Kunieda Takeharu1

Affiliation:

1. Departments of Neurosurgery and

2. Department of Neurosurgery, Washoukai Sadamoto Hospital, Matsuyama, Ehime, Japan

3. Department of Neurosurgery, Ehime Prefectural Central Hospital, Matsuyama; and

4. Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Toon;

Abstract

OBJECTIVEHigh invasiveness of malignant gliomas frequently causes early local recurrence of the tumor, resulting in extremely poor outcome. To control such recurrence, novel therapies targeted toward infiltrating glioma cells around the tumor border are required. Here, the authors investigated the antitumor activity of sonodynamic therapy (SDT) combined with a sonosensitizer, 5-aminolevulinic acid (5-ALA), on malignant gliomas to explore the possibility for clinical use of 5-ALA–mediated SDT (5-ALA-SDT).METHODSIn vitro cytotoxicity of 5-ALA-SDT was evaluated in U87 and U251 glioma cells and in U251Oct-3/4 glioma stemlike cells. Treatment-related apoptosis was analyzed using flow cytometry and TUNEL staining. Intracellular reactive oxygen species (ROS) were measured and the role of ROS in treatment-related cytotoxicity was examined by analysis of the effect of pretreatment with the radical scavenger edaravone. Effects of 5-ALA-SDT with high-intensity focused ultrasound (HIFU) on tumor growth, survival of glioma-transplanted mice, and histological features of the mouse brains were investigated.RESULTSThe 5-ALA-SDT inhibited cell growth and changed cell morphology, inducing cell shrinkage, vacuolization, and swelling. Flow cytometric analysis and TUNEL staining indicated that 5-ALA-SDT induced apoptotic cell death in all gliomas. The 5-ALA-SDT generated significantly higher ROS than in the control group, and inhibition of ROS generation by edaravone completely eliminated the cytotoxic effects of 5-ALA-SDT. In the in vivo study, 5-ALA-SDT with HIFU greatly prolonged survival of the tumor-bearing mice compared with that of the control group (p < 0.05). Histologically, 5-ALA-SDT produced mainly necrosis of the tumor tissue in the focus area and induced apoptosis of the tumor cells in the perifocus area around the target of the HIFU-irradiated field. The proliferative activity of the entire tumor was markedly decreased. Normal brain tissues around the ultrasonic irradiation field of HIFU remained intact.CONCLUSIONSThe 5-ALA-SDT was cytotoxic toward malignant gliomas. Generation of ROS by the SDT was thought to promote apoptosis of glioma cells. The 5-ALA-SDT with HIFU induced tumor necrosis in the focus area and apoptosis in the perifocus area of the HIFU-irradiated field, whereas the surrounding brain tissue remained normal, resulting in longer survival of the HIFU-treated mice compared with that of untreated mice. These results suggest that 5-ALA-SDT with HIFU may present a less invasive and tumor-specific therapy, not only for a tumor mass but also for infiltrating tumor cells in malignant gliomas.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

Reference50 articles.

1. Natural products in the discovery of novel sonosensitizers;Pang;Pharmacol Ther,2016

2. MR-guided, focused ultrasound: applications to essential tremor and other neurologic conditions;Suffredini;AJNR Am J Neuroradiol,2014

3. Natural products in the discovery of novel sonosensitizers;Pang;Pharmacol Ther,2016

4. Sonodynamic therapy consisting of focused ultrasound and a photosensitizer causes a selective antitumor effect in a rat intracranial glioma model;Nonaka;Anticancer Res,2009

5. Study of the mechanism of sonodynamic therapy in a rat glioma model;Song;Onco Targets Ther,2014

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3