Analysis of the cerebrospinal fluid pulse wave in intracranial pressure

Author:

Cardoso Erico R.,Rowan Jack O.,Galbraith Sam

Abstract

✓ The configuration of the intracranial pressure (ICP) pulse wave represents a complex sum of various components. Amplitude variations of an isolated component might reflect changes in a specific intracranial structure. Fifteen awake patients suffering from hydrocephalus, benign intracranial hypertension, or head injury underwent ICP monitoring through a ventricular catheter and were subjected to three standardized maneuvers to alter the intracranial dynamics: head elevation, voluntary hyperventilation, and cerebrospinal fluid (CSF) withdrawal. A 12° head elevation and fractionated CSF withdrawal caused a mild ICP drop and a proportionate amplitude reduction of all the wave components. Voluntary hyperventilation caused a comparable fall in ICP, and a disproportionate reduction in the amplitude of the wave components, especially the P2 component. It is postulated that the decrease in amplitude of the P2 component reflects the reduction of the cerebral bulk caused by hyperventilation. Head elevation and CSF withdrawal caused a decrease of global ICP but no specific changes in any intracranial structure, and consequently the configuration of the pulse wave remained unchanged. The establishment of relationships between anatomical substrate and particular wave components is promising since potentially it could be useful for monitoring conditions such as vasoparalysis, impaired cerebrovascular reactivity, and cerebral edema.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3