Author:
Cardoso Erico R.,Rowan Jack O.,Galbraith Sam
Abstract
✓ The configuration of the intracranial pressure (ICP) pulse wave represents a complex sum of various components. Amplitude variations of an isolated component might reflect changes in a specific intracranial structure. Fifteen awake patients suffering from hydrocephalus, benign intracranial hypertension, or head injury underwent ICP monitoring through a ventricular catheter and were subjected to three standardized maneuvers to alter the intracranial dynamics: head elevation, voluntary hyperventilation, and cerebrospinal fluid (CSF) withdrawal. A 12° head elevation and fractionated CSF withdrawal caused a mild ICP drop and a proportionate amplitude reduction of all the wave components. Voluntary hyperventilation caused a comparable fall in ICP, and a disproportionate reduction in the amplitude of the wave components, especially the P2 component. It is postulated that the decrease in amplitude of the P2 component reflects the reduction of the cerebral bulk caused by hyperventilation. Head elevation and CSF withdrawal caused a decrease of global ICP but no specific changes in any intracranial structure, and consequently the configuration of the pulse wave remained unchanged. The establishment of relationships between anatomical substrate and particular wave components is promising since potentially it could be useful for monitoring conditions such as vasoparalysis, impaired cerebrovascular reactivity, and cerebral edema.
Publisher
Journal of Neurosurgery Publishing Group (JNSPG)
Cited by
178 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献